Between First- and Second-Order Stochastic Dominance

Between First- and Second-Order Stochastic Dominance

0.00 Avg rating0 Votes
Article ID: iaor20174443
Volume: 63
Issue: 9
Start Page Number: 2933
End Page Number: 2947
Publication Date: Sep 2017
Journal: Management Science
Authors: , , ,
Keywords: stochastic processes, risk, optimization, probability, programming: convex
Abstract:

We develop a continuum of stochastic dominance rules, covering preferences from first‐ to second‐order stochastic dominance. The motivation for such a continuum is that while decision makers have a preference for ‘more is better,’ they are mostly risk averse but cannot assert that they would dislike any risk. For example, situations with targets, aspiration levels, and local convexities in induced utility functions in sequential decision problems may lead to preferences for some risks. We relate our continuum of stochastic dominance rules to utility classes, the corresponding integral conditions, and probability transfers and discuss the usefulness of these interpretations. Several examples involving, e.g., finite‐crossing cumulative distribution functions, location‐scale families, and induced utility, illustrate the implementation of the framework developed here. Finally, we extend our results to a combined order including convex (risk‐taking) stochastic dominance. This paper was accepted by Manel Baucells, decision analysis.

Reviews

Required fields are marked *. Your email address will not be published.