Article ID: | iaor20002992 |
Country: | Netherlands |
Volume: | 10 |
Issue: | 3 |
Start Page Number: | 283 |
End Page Number: | 320 |
Publication Date: | Jul 1998 |
Journal: | Computational Optimization and Applications |
Authors: | White L., Wang Zhi, Droegemeier K. |
Keywords: | meteorology, computational analysis |
A new algorithm is presented for carrying out large-scale unconstrained optimization required in variational data assimilation using the Newton method. The algorithm is referred to as the adjoint Newton algorithm. The adjoint Newton algorithm is based on the first- and second-order adjoint techniques allowing us to obtain the Newton line search direction by integrating a tangent linear equations model backwards in time (starting from a final condition with negative time steps). The error present in approximating the Hessian (the matrix of second-order derivatives) of the cost function with respect to the control variables in the quasi-Newton type algorithm is thus completely eliminated, while the storage problem related to the Hessian no longer exists since the explicit Hessian is not required in this algorithm. The adjoint Newton algorithm is applied to three one-dimensional models and to a two-dimensional limited-area shallow water equations model with both model generated and First Global Geophysical Experiment data. We compare the performance of the adjoint Newton algorithm with that of truncated Newton, adjoint truncated Newton, and LBFGS methods. Our numerical tests indicate that the adjoint Newton algorithm is very efficient and could find the minima within three or four iterations for problems tested here. In the case of the two-dimensional shallow water equations model, the adjoint Newton algorithm improves upon the efficiencies of the truncated Newton and LBFGS methods by a factor of at least 14 in terms of the CPU time required to satisfy the same convergence criterion. The Newton, truncated Newton and LBFGS methods are general purpose unconstrained minimization methods. The adjoint Newton algorithm is only useful for optimal control problems where the model equations serve as strong constraints and their corresponding tangent linear model may be integrated backwards in time. When the backwards integration of the tangent linear model is ill-posed in the sense of Hadamard, the adjoint Newton algorithm may not work. Thus, the adjoint Newton algorithm must be used with some caution. A possible solution to avoid the current weakness of the adjoint Newton algorithm is proposed.