Tutorial: Parallel Computing of Simulation Models for Risk Analysis

Tutorial: Parallel Computing of Simulation Models for Risk Analysis

0.00 Avg rating0 Votes
Article ID: iaor20164910
Volume: 36
Issue: 10
Start Page Number: 1844
End Page Number: 1854
Publication Date: Oct 2016
Journal: Risk Analysis
Authors: , , ,
Keywords: risk, performance, computational analysis: parallel computers
Abstract:

Simulation models are widely used in risk analysis to study the effects of uncertainties on outcomes of interest in complex problems. Often, these models are computationally complex and time consuming to run. This latter point may be at odds with time‐sensitive evaluations or may limit the number of parameters that are considered. In this article, we give an introductory tutorial focused on parallelizing simulation code to better leverage modern computing hardware, enabling risk analysts to better utilize simulation‐based methods for quantifying uncertainty in practice. This article is aimed primarily at risk analysts who use simulation methods but do not yet utilize parallelization to decrease the computational burden of these models. The discussion is focused on conceptual aspects of embarrassingly parallel computer code and software considerations. Two complementary examples are shown using the languages MATLAB and R. A brief discussion of hardware considerations is located in the Appendix.

Reviews

Required fields are marked *. Your email address will not be published.