Article ID: | iaor201110001 |
Volume: | 25 |
Issue: | 13 |
Start Page Number: | 3073 |
End Page Number: | 3090 |
Publication Date: | Oct 2011 |
Journal: | Water Resources Management |
Authors: | Wang Ying, Chen Yun, Peng Shizhang |
Keywords: | water |
Irrigation water availability is a main driver which determines cropping patterns for an irrigation area. Irrigation water availability will potentially reduce due to changes in climate and irrigation extraction limits. Cropping patterns should be adjusted to meet this challenge. This study presents a new approach for assessing future cropping patterns using GIS in combination with an Irrigation Water Availability Simulation model (IWAS) at irrigation area scale. The IWAS‐GIS framework was developed for analysis of cropping pattern options based on the forecast of irrigation water availability in 2030 for the Murrumbidgee Irrigation Area (MIA) which is one of the most important irrigation areas in Australia. Six scenarios considering climatic conditions and the irrigation availabilities were input into the IWAS‐GIS framework to simulate cropping pattern changes corresponding to predicted monthly irrigation water availability. Cropping patterns were designed by integration of soil type and irrigation water availability to improve irrigation sustainability. Simulations results indicate that the total irrigated areas will likely decrease with drier climate and less irrigation availability. Rice and pasture areas change significantly when climate and irrigation availability varies. Under the same climate condition, horticulture area increases when irrigation availability decrease. The percentage of lands which are unsuitable for cropping has reduced with the drying climate and shrinking irrigation availability. The IWAS‐GIS is simple to implement and provides an easy way for assessing spatial cropping pattern changes based on irrigation water availability. This framework was developed to help irrigators plan cropping patterns corresponding to irrigation water availability. It is flexible to be adopted for similar applications in other irrigation areas.