Article ID: | iaor20083945 |
Country: | United Kingdom |
Volume: | 58 |
Issue: | 12 |
Start Page Number: | 1574 |
End Page Number: | 1585 |
Publication Date: | Dec 2007 |
Journal: | Journal of the Operational Research Society |
Authors: | Li J., Aickelin U., Burke E.K. |
Keywords: | timetabling, heuristics: ant systems, heuristics: genetic algorithms, heuristics: local search, personnel & manpower planning |
This paper proposes a new memetic evolutionary algorithm to achieve explicit learning in rule-based nurse rostering, which involves applying a set of heuristic rules for each nurse's assignment. The main framework of the algorithm is an estimation of distribution algorithm, in which an ant-miner methodology improves the individual solutions produced in each generation. Unlike our previous work (where learning is implicit), the learning in the memetic estimation of distribution algorithm is explicit, that is, we are able to identify building blocks directly. The overall approach learns by building a probabilistic model, that is, an estimation of the probability distribution of individual nurse-rule pairs that are used to construct schedules. The local search processor (i.e. the ant-miner) reinforces nurse–rule pairs that receive higher rewards. A challenging real-world nurse rostering problem is used as the test problem. Computational results show that the proposed approach outperforms most existing approaches. It is suggested that the learning methodologies suggested in this paper may be applied to other scheduling problems where schedules are built systematically according to specific rules.