Article ID: | iaor20051218 |
Country: | United Kingdom |
Volume: | 36 |
Issue: | 3 |
Start Page Number: | 291 |
End Page Number: | 311 |
Publication Date: | Jun 2004 |
Journal: | Engineering Optimization |
Authors: | Renaud John E., Agarwal Harish |
Keywords: | quality & reliability, engineering, optimization |
Traditionally, reliability based design optimization (RBDO) is formulated as a nested optimization problem. For these problems the objective is to minimize a cost function while satisfying the reliability constraints. The reliability constraints are usually formulated as constraints on the probability of failure corresponding to each of the failure modes or a single constraint on the system probability of failure. The probability of failure is usually estimated by performing a reliability analysis. The difficulty in evaluating reliability constraints comes from the fact that modern reliability analysis methods are themselves formulated as an optimization problem. Solving such nested optimization problems is extremely expensive for large scale multidisciplinary systems which are likewise computationally intensive. In this research, a framework for performing reliability based multidisciplinary design optimization using approximations is developed. Response surface approximations (RSA) of the limit state functions are used to estimate the probability of failure. An outer loop is incorporated to ensure that the approximate RBDO converges to the actual most probable point of failure. The framework is compared with the exact RBDO procedure. In the proposed methodology, RSAs are employed to significantly reduce the computational expense associated with traditional RBDO. The proposed approach is implemented in application to multidisciplinary test problems, and the computational savings and benefits are discussed.