Simulation models of the interactions between herbivore foraging strategies, social behavior, and plant community dynamics

Simulation models of the interactions between herbivore foraging strategies, social behavior, and plant community dynamics

0.00 Avg rating0 Votes
Article ID: iaor20023620
Country: United States
Volume: 157
Issue: 1
Start Page Number: 76
End Page Number: 96
Publication Date: Jan 2001
Journal: American Naturalist
Authors: ,
Keywords: simulation: applications, behaviour, search
Abstract:

Herbivory often operates through a feedback in which herbivores affect the success and location of plants, which in turn affects the foraging behavior of animals. Factors other than food, such as social behavior, may influence the interactions between herbivores and the plants they consume. We used a simulation model to compare the effects of foraging and social behavior on plant distribution and foraging efficiency by gophers (Thomomys bottae) in a system characteristic of California grasslands. In this system, annual forbs are the preferred food items, and their abundance increases in areas disturbed by gopher burrowing. In addition, gopher social interactions generate buffer zones between adjacent burrows. During the first year of the simulations, before gophers affected the plant community, feeding efficiency declined with increased gopher density. However, after 40 yr, annual plant abundance increased with increasing gopher density, yielding higher maximum gopher density and per capita foraging efficiency. Conversely, increased width of the buffer zones lowered maximum gopher density and annual plant abundance resulting in lower feeding efficiency. In addition, the compact burrow structure of gophers employing an area-restricted search strategy allowed a higher density of gophers to coexist, resulting in higher annual plant abundance and higher per capita food-capture rates.

Reviews

Required fields are marked *. Your email address will not be published.