The empty space function of a stationary point process in ℝd is the function that assigns to each r, r>0, the probability that there is no point within distance r of O. In a recent paper Van Lieshout and Baddeley study the so-called J-function, which is defined as the ratio of the empty space function of a stationary point process and that of its corresponding reduced Palm process. They advocate the use of the J-function as a characterization of the type of spatial interaction. Therefore it is natural to ask whether J≡1 implies that the point process is Poisson. We restrict our analysis to the one-dimensional case and show that a classical construction by Szász provides an immediate counterexample. In this example the interpoint distances are still exponentially distributed. This raises the question whether it is possible to have J≡1 but non-exponentially distributed interpoint distances. We construct a point process with J≡1 but where the interpoint distances are bounded.