A single-server queue with batch arrivals and semi-Markov services

A single-server queue with batch arrivals and semi-Markov services

0.00 Avg rating0 Votes
Article ID: iaor20172890
Volume: 86
Issue: 3
Start Page Number: 217
End Page Number: 240
Publication Date: Aug 2017
Journal: Queueing Systems
Authors: , , ,
Keywords: queues: applications, markov processes, service
Abstract:

We investigate the transient and stationary queue length distributions of a class of service systems with correlated service times. The classical M X / G / 1 equ1 queue with semi‐Markov service times is the most prominent example in this class and serves as a vehicle to display our results. The sequence of service times is governed by a modulating process J(t). The state of J ( · ) equ2 at a service initiation time determines the joint distribution of the subsequent service duration and the state of J ( · ) equ3 at the next service initiation. Several earlier works have imposed technical conditions, on the zeros of a matrix determinant arising in the analysis, that are required in the computation of the stationary queue length probabilities. The imposed conditions in several of these articles are difficult or impossible to verify. Without such assumptions, we determine both the transient and the steady‐state joint distribution of the number of customers immediately after a departure and the state of the process J(t) at the start of the next service. We numerically investigate how the mean queue length is affected by variability in the number of customers that arrive during a single service time. Our main observations here are that increasing variability may reduce the mean queue length, and that the Markovian dependence of service times can lead to large queue lengths, even if the system is not in heavy traffic.

Reviews

Required fields are marked *. Your email address will not be published.