Article ID: | iaor2017926 |
Volume: | 20 |
Issue: | 3 |
Start Page Number: | 344 |
End Page Number: | 362 |
Publication Date: | Mar 2017 |
Journal: | International Journal of Productivity and Quality Management |
Authors: | Mondal Subhas Chandra, Mandal Prosun |
Keywords: | manufacturing industries, combinatorial optimization, heuristics, neural networks, simulation |
Centreless grinding operation is widely used in manufacturing industry for its high level of accuracy and micro‐finishing of shaft, pin material. This paper presents an application of artificial neural network and particle swarm optimisation techniques for modelling and optimisation of centreless grinding operation for machining of C40 steel crane‐hook‐pin. Full factorial design is used taking three factors at three levels each and a total 33 or 27 number of experiments are done in all possible combination of factors. The performance of this particular trained neural network has been tested with the experimental data and found satisfactory. Thus the proposed ANN model is efficiently used for predicting surface roughness in centreless grinding operation. Particle swarm optimisation technique combining with response surface modelling are used to find optimal parameter settings. The optimal parameter corresponds to 12 rpm regulating wheel speed, 1/3rd opening of coolant valve opening and 20.002 µm depth of cut.