Defender‐Attacker Decision Tree Analysis to Combat Terrorism

Defender‐Attacker Decision Tree Analysis to Combat Terrorism

0.00 Avg rating0 Votes
Article ID: iaor201765
Volume: 36
Issue: 12
Start Page Number: 2258
End Page Number: 2271
Publication Date: Dec 2016
Journal: Risk Analysis
Authors: ,
Keywords: risk, decision, game theory, military & defence, simulation
Abstract:

We propose a methodology, called defender–attacker decision tree analysis, to evaluate defensive actions against terrorist attacks in a dynamic and hostile environment. Like most game‐theoretic formulations of this problem, we assume that the defenders act rationally by maximizing their expected utility or minimizing their expected costs. However, we do not assume that attackers maximize their expected utilities. Instead, we encode the defender's limited knowledge about the attacker's motivations and capabilities as a conditional probability distribution over the attacker's decisions. We apply this methodology to the problem of defending against possible terrorist attacks on commercial airplanes, using one of three weapons: infrared‐guided MANPADS (man‐portable air defense systems), laser‐guided MANPADS, or visually targeted RPGs (rocket propelled grenades). We also evaluate three countermeasures against these weapons: DIRCMs (directional infrared countermeasures), perimeter control around the airport, and hardening airplanes. The model includes deterrence effects, the effectiveness of the countermeasures, and the substitution of weapons and targets once a specific countermeasure is selected. It also includes a second stage of defensive decisions after an attack occurs. Key findings are: (1) due to the high cost of the countermeasures, not implementing countermeasures is the preferred defensive alternative for a large range of parameters; (2) if the probability of an attack and the associated consequences are large, a combination of DIRCMs and ground perimeter control are preferred over any single countermeasure.

Reviews

Required fields are marked *. Your email address will not be published.