Article ID: | iaor201530650 |
Volume: | 47 |
Start Page Number: | 276 |
End Page Number: | 284 |
Publication Date: | Jan 2016 |
Journal: | Waste Management |
Authors: | Fyffe John R, Breckel Alex C, Townsend Aaron K, Webber Michael E |
Keywords: | government |
Single‐stream recycling has helped divert millions of metric tons of waste from landfills in the U.S., where recycling rates for municipal solid waste are currently over 30%. However, material recovery facilities (MRFs) that sort the municipal recycled streams do not recover 100% of the incoming material. Consequently, they landfill between 5% and 15% of total processed material as residue. This residue is primarily composed of high‐energy‐content non‐recycled plastics and fiber. One possible end‐of‐life solution for these energy‐dense materials is to process the residue into Solid Recovered Fuel (SRF) that can be used as an alternative energy resource capable of replacing or supplementing fuel resources such as coal, natural gas, petroleum coke, or biomass in many industrial and power production processes. This report addresses the energetic and environmental benefits and trade‐offs of converting non‐recycled post‐consumer plastics and fiber derived from MRF residue streams into SRF for use in a cement kiln. An experimental test burn of 118Mg of SRF in the precalciner portion of the cement kiln was conducted. The SRF was a blend of 60% MRF residue and 40% post‐industrial waste products producing an estimated 60% plastic and 40% fibrous material mixture. The SRF was fed into the kiln at 0.9Mg/h for 24h and then 1.8Mg/h for the following 48h. The emissions data recorded in the experimental test burn were used to perform the life‐cycle analysis portion of this study. The analysis included the following steps: transportation, landfill, processing and fuel combustion at the cement kiln. The energy use and emissions at each step is tracked for the two cases: (1) The Reference Case, where MRF residue is disposed of in a landfill and the cement kiln uses coal as its fuel source, and (2) The SRF Case, in which MRF residue is processed into SRF and used to offset some portion of coal use at the cement kiln. The experimental test burn and accompanying analysis indicate that using MRF residue to produce SRF for use in cement kilns is likely an advantageous alternative to disposal of the residue in landfills. The use of SRF can offset fossil fuel use, reduce CO