Risk Reduction of an Invasive Insect by Targeting Surveillance Efforts with the Assistance of a Phenology Model and International Maritime Shipping Routes and Schedules

Risk Reduction of an Invasive Insect by Targeting Surveillance Efforts with the Assistance of a Phenology Model and International Maritime Shipping Routes and Schedules

0.00 Avg rating0 Votes
Article ID: iaor20162077
Volume: 36
Issue: 5
Start Page Number: 914
End Page Number: 925
Publication Date: May 2016
Journal: Risk Analysis
Authors:
Keywords: risk, simulation
Abstract:

Reducing the risk of introduction to North America of the invasive Asian gypsy moth (Lymantria dispar asiatica Vnukovskij and L. d. japonica [Motschulsky]) on international maritime vessels involves two tactics: (1) vessels that wish to arrive in Canada or the United States and have visited any Asian port that is subject to regulation during designated times must obtain a predeparture inspection certificate from an approved entity; and (2) vessels with a certificate may be subjected to an additional inspection upon arrival. A decision support tool is described here with which the allocation of inspection resources at North American ports can be partitioned among multiple vessels according to estimates of the potential onboard Asian gypsy moth population and estimates of the onboard larval emergence pattern. The decision support tool assumes that port inspection is uniformly imperfect at the Asian ports and that each visit to a regulated port has potential for the vessel to be contaminated with gypsy moth egg masses. The decision support tool uses a multigenerational phenology model to estimate the potential onboard population of egg masses by calculating the temporal intersection between the dates of port visits to regulated ports and the simulated oviposition pattern in each port. The phenological development of the onboard population is simulated each day of the vessel log until the vessel arrives at the port being protected from introduction. Multiple independent simulations are used to create a probability distribution of the size and timing of larval emergence.

Reviews

Required fields are marked *. Your email address will not be published.