Article ID: | iaor201528030 |
Volume: | 46 |
Issue: | 5 |
Start Page Number: | 981 |
End Page Number: | 1006 |
Publication Date: | Oct 2015 |
Journal: | Decision Sciences |
Authors: | Korhonen Pekka, Kksalan Murat, Wallenius Jyrki, Fowler John W, Gel Esma S, Marquis Jon |
Keywords: | computers: information, programming: multiple criteria, optimization, behaviour, scheduling, location, combinatorial optimization |
We investigate the impact of the number of human–computer interactions, different interaction patterns, and human inconsistencies in decision maker responses on the convergence of an interactive, evolutionary multiobjective algorithm recently developed by the authors. In our context ‘an interaction’ means choosing the best and worst solutions among a sample of six solutions. By interaction patterns we refer to whether preference questioning is more front‐, center‐, rear‐, or edge‐loaded. As test problems we use two‐ to four‐objective knapsack problems, multicriteria scheduling problems, and multiobjective facility location problems. In the tests, two different preference functions are used to represent actual decision maker preferences, linear and Chebyshev. The results indicate that it is possible to obtain solutions that are very good or even nearly optimal with a reasonable number of interactions. The results also indicate that the algorithm is robust to minor inconsistencies in decision maker responses. There is also surprising robustness toward different patterns of interaction with the decision maker. The results are of interest to the evolutionary multiobjective (EMO) community actively developing hybrid interactive EMO approaches.