IB-ICCMSP: An Integrated Irrigation Water Optimal Allocation and Planning Model Based on Inventory Theory under Uncertainty

IB-ICCMSP: An Integrated Irrigation Water Optimal Allocation and Planning Model Based on Inventory Theory under Uncertainty

0.00 Avg rating0 Votes
Article ID: iaor2014264
Volume: 28
Issue: 1
Start Page Number: 241
End Page Number: 260
Publication Date: Jan 2014
Journal: Water Resources Management
Authors: , , ,
Keywords: optimization, allocation: resources, planning, inventory, stochastic processes, simulation
Abstract:

In this study, an inventory‐theory‐based inexact chance‐constrained multi‐stage stochastic programming (IB‐ICCMSP) model under multi‐uncertainties is developed. IB‐ICCMSP integrates inventory theory into an inexact chance‐constrained multi‐stage stochastic optimization framework. This method can not only effectively address system multiple uncertainties (e.g. discrete intervals and probability density functions) and dynamic features, but also provide water transferring and allocating schemes among multiple stages. The developed model is applied to irrigation water allocation optimization system in Zhangye City, Gansu province, China. Based on the runoff simulation prediction of Yingluo Gorge and water supply–demand balance analysis of the 12 irrigation areas in Zhangye City, different optimal irrigation water measures are generated under different flow levels and different probabilities in the planning year. The obtained results are valuable for supporting the adjustment of the existing irrigation patterns and identifying desired water‐allocation plans for irrigation under multi‐uncertainties.

Reviews

Required fields are marked *. Your email address will not be published.