Mixed‐Integer Linear Programming Formulations for the Software Clustering Problem

Mixed‐Integer Linear Programming Formulations for the Software Clustering Problem

0.00 Avg rating0 Votes
Article ID: iaor20132752
Volume: 55
Issue: 1
Start Page Number: 113
End Page Number: 135
Publication Date: May 2013
Journal: Computational Optimization and Applications
Authors: , ,
Keywords: programming: linear
Abstract:

The clustering problem has an important application in software engineering, which usually deals with large software systems with complex structures. To facilitate the work of software maintainers, components of the system are divided into groups in such a way that the groups formed contain highly‐interdependent modules and the independent modules are placed in different groups. The measure used to analyze the quality of the system partition is called Modularization Quality (MQ). Designers represent the software system as a graph where modules are represented by nodes and relationships between modules are represented by edges. This graph is referred in the literature as Module Dependency Graph (MDG). The Software Clustering Problem (SCP) consists in finding the partition of the MDG that maximizes the MQ. In this paper we present three new mathematical programming formulations for the SCP. Firstly, we formulate the SCP as a sum of linear fractional functions problem and then we apply two different linearization procedures to reformulate the problem as Mixed‐Integer Linear Programming (MILP) problems. We discuss a preprocessing technique that reduces the size of the original problem and develop valid inequalities that have been shown to be very effective in tightening the formulations. We present numerical results that compare the formulations proposed and compare our results with the solutions obtained by the exhaustive algorithm supported by the freely available Bunch clustering tool, for benchmark problems.

Reviews

Required fields are marked *. Your email address will not be published.