Article ID: | iaor20132752 |
Volume: | 55 |
Issue: | 1 |
Start Page Number: | 113 |
End Page Number: | 135 |
Publication Date: | May 2013 |
Journal: | Computational Optimization and Applications |
Authors: | Fampa Marcia, Khler Viviane, Arajo Olinto |
Keywords: | programming: linear |
The clustering problem has an important application in software engineering, which usually deals with large software systems with complex structures. To facilitate the work of software maintainers, components of the system are divided into groups in such a way that the groups formed contain highly‐interdependent modules and the independent modules are placed in different groups. The measure used to analyze the quality of the system partition is called Modularization Quality (MQ). Designers represent the software system as a graph where modules are represented by nodes and relationships between modules are represented by edges. This graph is referred in the literature as Module Dependency Graph (MDG). The Software Clustering Problem (SCP) consists in finding the partition of the MDG that maximizes the MQ. In this paper we present three new mathematical programming formulations for the SCP. Firstly, we formulate the SCP as a sum of linear fractional functions problem and then we apply two different linearization procedures to reformulate the problem as Mixed‐Integer Linear Programming (MILP) problems. We discuss a preprocessing technique that reduces the size of the original problem and develop valid inequalities that have been shown to be very effective in tightening the formulations. We present numerical results that compare the formulations proposed and compare our results with the solutions obtained by the exhaustive algorithm supported by the freely available Bunch clustering tool, for benchmark problems.