Modified subspace Barzilai‐Borwein gradient method for non‐negative matrix factorization

Modified subspace Barzilai‐Borwein gradient method for non‐negative matrix factorization

0.00 Avg rating0 Votes
Article ID: iaor20132750
Volume: 55
Issue: 1
Start Page Number: 173
End Page Number: 196
Publication Date: May 2013
Journal: Computational Optimization and Applications
Authors: ,
Keywords: matrices
Abstract:

Non‐negative matrix factorization (NMF) is a problem to obtain a representation of data using non‐negativity constraints. Since the NMF was first proposed by Lee, NMF has attracted much attention for over a decade and has been successfully applied to numerous data analysis problems. Recent years, many variants of NMF have been proposed. Common methods are: iterative multiplicative update algorithms, gradient descent methods, alternating least squares (ANLS). Since alternating least squares has nice optimization properties, various optimization methods can be used to solve ANLS’s subproblems. In this paper, we propose a modified subspace Barzilai‐Borwein for subproblems of ANLS. Moreover, we propose a modified strategy for ANLS. Global convergence results of our algorithm are established. The results of numerical experiments are reported to show the effectiveness of the proposed algorithm.

Reviews

Required fields are marked *. Your email address will not be published.