Article ID: | iaor20127787 |
Volume: | 110 |
Issue: | 1 |
Start Page Number: | 89 |
End Page Number: | 109 |
Publication Date: | Feb 2013 |
Journal: | Reliability Engineering and System Safety |
Authors: | Martins Marcelo Ramos, Maturana Marcos Coelho |
Keywords: | accident, behaviour, transportation: water |
During the last three decades, several techniques have been developed for the quantitative study of human reliability. In the 1980s, techniques were developed to model systems by means of binary trees, which did not allow for the representation of the context in which human actions occur. Thus, these techniques cannot model the representation of individuals, their interrelationships, and the dynamics of a system. These issues make the improvement of methods for Human Reliability Analysis (HRA) a pressing need. To eliminate or at least attenuate these limitations, some authors have proposed modeling systems using Bayesian Belief Networks (BBNs). The application of these tools is expected to address many of the deficiencies in current approaches to modeling human actions with binary trees. This paper presents a methodology based on BBN for analyzing human reliability and applies this method to the operation of an oil tanker, focusing on the risk of collision accidents. The obtained model was used to determine the most likely sequence of hazardous events and thus isolate critical activities in the operation of the ship to study Internal Factors (IFs), Skills, and Management and Organizational Factors (MOFs) that should receive more attention for risk reduction.