Article ID: | iaor20121396 |
Volume: | 46 |
Issue: | 3 |
Start Page Number: | 480 |
End Page Number: | 486 |
Publication Date: | Mar 2012 |
Journal: | Transportation Research Part A |
Authors: | Hensher David A |
Keywords: | statistics: regression |
There is growing interest in incorporating both preference heterogeneity and scale heterogeneity in choice models, as a way of capturing an increasing number of sources of utility amongst a set of alternatives. The extension of mixed logit to incorporate scale heterogeneity in a generalised mixed logit (GMXL) model provides a way to accommodate these sources of influence, observed and unobserved. The small but growing number of applications of the GMXL model have parameterized scale heterogeneity as a single estimate; however it is often the case that analysts pool data from more than one source, be it revealed preference (RP) and stated preference (SP) sources, or multiple SP sources, inducing the potential for differences in the scale factor between the data sources. Existing practice has developed ways of accommodating scale differences between data sources by adopting a scale homogeneity assumption within each data source (e.g., the nested logit trick) that varies between data sources. This paper extends the state of the art by incorporating data‐source specific scale differences in scale heterogeneity setting across pooled RP and SP data set. An example of choice amongst RP and SP transport modes (including two ‘new’ SP modes) is used to obtain values of travel time savings that vary significantly between a model that accounts for scale heterogeneity differences within pooled RP and SP data, and the other where differences in scale heterogeneity is also accommodated between RP and SP data.