A Distributional Interpretation of Robust Optimization

A Distributional Interpretation of Robust Optimization

0.00 Avg rating0 Votes
Article ID: iaor2012791
Volume: 37
Issue: 1
Start Page Number: 95
End Page Number: 110
Publication Date: Feb 2012
Journal: Mathematics of Operations Research
Authors: , ,
Keywords: probability
Abstract:

Motivated by data‐driven decision making and sampling problems, we investigate probabilistic interpretations of robust optimization (RO). We establish a connection between RO and distributionally robust stochastic programming (DRSP), showing that the solution to any RO problem is also a solution to a DRSP problem. Specifically, we consider the case where multiple uncertain parameters belong to the same fixed dimensional space and find the set of distributions of the equivalent DRSP problem. The equivalence we derive enables us to construct RO formulations for sampled problems (as in stochastic programming and machine learning) that are statistically consistent, even when the original sampled problem is not. In the process, this provides a systematic approach for tuning the uncertainty set. The equivalence further provides a probabilistic explanation for the common shrinkage heuristic, where the uncertainty set used in an RO problem is a shrunken version of the original uncertainty set.

Reviews

Required fields are marked *. Your email address will not be published.