Dose-Response Model of Rocky Mountain Spotted Fever (RMSF) for Human

Dose-Response Model of Rocky Mountain Spotted Fever (RMSF) for Human

0.00 Avg rating0 Votes
Article ID: iaor201112361
Volume: 31
Issue: 10
Start Page Number: 1610
End Page Number: 1621
Publication Date: Oct 2011
Journal: Risk Analysis
Authors: ,
Keywords: medicine, risk, simulation: applications
Abstract:

Rickettsia rickettsii is the causative agent of Rocky Mountain spotted fever (RMSF) and is the prototype bacterium in the spotted fever group of rickettsiae, which is found in North, Central, and South America. The bacterium is gram negative and an obligate intracellular pathogen. The disease is transmitted to humans and vertebrate host through tick bites; however, some cases of aerosol transmission also have been reported. The disease can be difficult to diagnose in the early stages, and without prompt and appropriate treatment, it can be fatal. This article develops dose-response models of different routes of exposure for RMSF in primates and humans. The beta-Poisson model provided the best fit to the dose-response data of aerosol-exposed rhesus monkeys, and intradermally inoculated humans (morbidity as end point of response). The average 50% infectious dose among (ID50) exposed human population, N50, is 23 organisms with 95% confidence limits of 1 to 89 organisms. Similarly, ID10 and ID20 are 2.2 and 5.0, respectively. Moreover, the data of aerosol-exposed rhesus monkeys and intradermally inoculated humans could be pooled. This indicates that the dose-response models fitted to different data sets are not significantly different and can be described by the same relationship.

Reviews

Required fields are marked *. Your email address will not be published.