Article ID: | iaor20101793 |
Volume: | 44 |
Issue: | 3 |
Start Page Number: | 147 |
End Page Number: | 158 |
Publication Date: | Mar 2010 |
Journal: | Transportation Research Part A |
Authors: | Tsai Jyh-Fa, Chu Chih-Peng |
Keywords: | investment |
This study explores the optimal investment in the length of an expanded section of road to mitigate the congestion on a transportation corridor. It is assumed that one end of the road is in the central business district (CBD) and that the households are uniformly distributed along the road. Each individual makes trips from his/her residence to the CBD. Trip demand is elastic and depends on the cost of the trip (including congestion costs). During the first stage, the government determines the length of the expanded section given the width of that section. In the second stage, road users determine their trip demands by taking into consideration the trip cost function. In the process of solving this problem, the equilibrium traffic volume is first solved using differential equations. The optimal length of the expanded section is then solved by maximizing the social welfare. The analysis is then applied to the case of the Tucheng city – Banciao city – Taipei CBD corridor in the Taipei metropolitan area. The scheme of road expansion without tolling performs closely to the first-best scheme for the case of a high potential demand. This study's approach can serve as valuable reference for city planners engaged in road planning in a transportation corridor between the CBD and satellite cities in a metropolitan area.