Article ID: | iaor200971703 |
Country: | United Kingdom |
Volume: | 60 |
Issue: | 12 |
Start Page Number: | 1708 |
End Page Number: | 1718 |
Publication Date: | Dec 2009 |
Journal: | Journal of the Operational Research Society |
Authors: | Laporte G, Wen M, Larsen J, Clausen J, Cordeau J-F |
Over the past decade, cross-docking has emerged as an important material handling technology in transportation. A variation of the well-known Vehicle Routing Problem (VRP), the VRP with Cross-Docking (VRPCD) arises in a number of logistics planning contexts. This paper addresses the VRPCD, where a set of homogeneous vehicles are used to transport orders from the suppliers to the corresponding customers via a cross-dock. The orders can be consolidated at the cross-dock but cannot be stored for very long because the cross-dock does not have long-term inventory-holding capabilities. The objective of the VRPCD is to minimize the total travel time while respecting time window constraints at the nodes and a time horizon for the whole transportation operation. In this paper, a mixed integer programming formulation for the VRPCD is proposed. A tabu search heuristic is embedded within an adaptive memory procedure to solve the problem. The proposed algorithm is implemented and tested on data sets provided by the Danish consultancy Transvision, and involving up to 200 pairs of nodes. Experimental results show that this algorithm can produce high-quality solutions (less than 5% away from optimal solution values) within very short computational time.