Enhancing inflow forecasting model at Aswan High Dam utilizing radial basis neural network and upstream monitoring station measurements

Enhancing inflow forecasting model at Aswan High Dam utilizing radial basis neural network and upstream monitoring station measurements

0.00 Avg rating0 Votes
Article ID: iaor200971496
Country: Netherlands
Volume: 23
Issue: 11
Start Page Number: 2289
End Page Number: 2315
Publication Date: Sep 2009
Journal: Water Resources Management
Authors: , , ,
Keywords: agriculture & food, neural networks, forecasting: applications
Abstract:

The Nile River is considered the main life artery for so many African countries especially Egypt. Therefore, it is of the essence to preserve its water and utilize it very efficiently. Developing inflow-forecasting model is considered the technical way to effectively achieve such preservation. The hydrological system of the Nile River under consideration has several dams and barrages that are equipped with control gates. The improvement of these hydraulic structures' criteria for operation can be assessed if reliable forecasts of inflows to the reservoir are available. Recently, the authors developed a forecasting model for the natural inflow at Aswan High Dam (AHD) based on Artificial Intelligence (AI). This model was developed based on the historical inflow data of the AHD and successfully provided accurate inflow forecasts with error less than 10%. However, having several forecasting models based on different types of data increase the level of confidences of the water resources planners and AHD operators. In this study, two forecasting model approach based on Radial Basis Function Neural Network (RBFNN) method for the natural inflow at AHD utilizing the stream flow data of the monitoring stations upstream the AHD is developed. Natural inflow data collected over the last 30 years at four monitoring stations upstream AHD were used to develop the model and examine its performance. Inclusive data analysis through examining cross-correlation sequences, water traveling time, and physical characteristics of the stream flow data have been developed to help reach the most suitable RBFNN model architecture. The Forecasting Error (FE) value of the error and the distribution of the error are the two statistical performance indices used to evaluate the model accuracy. In addition, comprehensive comparison analysis is carried out to evaluate the performance of the proposed model over those recently developed for forecasting the inflow at AHD. The results of the current study showed that the proposed model improved the forecasting accuracy by 50% for the low inflow season, while keep the forecasting accuracy in the same range for the high inflow season.

Reviews

Required fields are marked *. Your email address will not be published.