A hybrid data mining/simulation approach for modelling outpatient no-shows in clinic scheduling

A hybrid data mining/simulation approach for modelling outpatient no-shows in clinic scheduling

0.00 Avg rating0 Votes
Article ID: iaor200969057
Country: United Kingdom
Volume: 60
Issue: 8
Start Page Number: 1056
End Page Number: 1068
Publication Date: Aug 2009
Journal: Journal of the Operational Research Society
Authors: , ,
Keywords: datamining, timetabling
Abstract:

This paper considers the outpatient no-show problem faced by a rural free clinic located in the south-eastern United States. Using data mining and simulation techniques, we develop sequencing schemes for patients, in order to optimize a combination of performance measures used at the clinic. We utilize association rule mining (ARM) to build a model for predicting patient no-shows; and then use a set covering optimization method to derive three manageable sets of rules for patient sequencing. Simulation is used to determine the optimal number of patients and to evaluate the models. The ARM technique presented here results in significant improvements over models that do not employ rules, supporting the conjecture that, when dealing with noisy data such as in an outpatient clinic, extracting partial patterns, as is done by ARM, can be of significant value for simulation modelling.

Reviews

Required fields are marked *. Your email address will not be published.