Article ID: | iaor20083893 |
Country: | United Kingdom |
Volume: | 38 |
Issue: | 5/6 |
Start Page Number: | 535 |
End Page Number: | 548 |
Publication Date: | Jun 2007 |
Journal: | Cybernetics and Systems |
Authors: | Becker Matthias, Szczerbicka Helena, Thomas Michael |
Keywords: | heuristics: genetic algorithms, neural networks, optimization, optimization: simulated annealing |
In this article we evaluate and compare diverse methodologies for designing low-noise tread profiles. Finding a low noise tread profile under given constraints can be described as a search in search space which is typically of the order of a 50- to 70-dimensional vector space. A complete search for the optimal tread profile is not possible even with today's computers. Thus in this work we compare the feasibility of three classes of algorithms for tread profile construction. First, we discuss approaches of speeding up the generation and analysis of tread profiles. Second we use two algorithms for iterative construction of large tread profiles out of several smaller tread profiles known to be of good quality. One of these algorithms is based on Neural Networks. Third, we evaluate heuristic optimization algorithms such as Genetic Algorithms and Simulated Annealing. Last we compare suitability and efficiency of our approaches.