Article ID: | iaor20081243 |
Country: | United Kingdom |
Volume: | 9 |
Issue: | 5 |
Start Page Number: | 433 |
End Page Number: | 452 |
Publication Date: | Oct 2006 |
Journal: | Journal of Scheduling |
Authors: | Johannes Berit |
We consider the NP-hard problem of scheduling parallel jobs with release dates on identical parallel machines to minimize the makespan. A parallel job requires simultaneously a prespecified, job-dependent number of machines when being processed. We prove that the makespan of any nonpreemptive list-schedule is within a factor of 2 of the optimal preemptive makespan. This gives the best-known approximation algorithms for both the preemptive and the nonpreemptive variant of the problem. We also show that no list-scheduling algorithm can achieve a better performance guarantee than 2 for the nonpreemptive problem, no matter which priority list is chosen. List-scheduling also works in the online setting where jobs arrive over time and the length of a job becomes known only when it completes; it therefore yields a deterministic online algorithm with competitive ratio 2 as well. In addition, we consider a different online model in which jobs arrive one by one and need to be scheduled before the next job becomes known. We show that no list-scheduling algorithm has a constant competitive ratio. Still, we present the first online algorithm for scheduling parallel jobs with a constant competitive ratio in this context. We also prove a new information-theoretic lower bound of 2.25 for the competitive ratio of any deterministic online algorithm for this model. Moreover, we show that 6/5 is a lower bound for the competitive ratio of any deterministic online algorithm of the preemptive version of the model jobs arriving over time.