Article ID: | iaor20081232 |
Country: | United Kingdom |
Volume: | 9 |
Issue: | 1 |
Start Page Number: | 7 |
End Page Number: | 34 |
Publication Date: | Feb 2006 |
Journal: | Journal of Scheduling |
Authors: | Uzsoy Reha, Aytu Haldun, Geiger Christopher D. |
Keywords: | artificial intelligence, heuristics: genetic algorithms |
Priority-dispatching rules have been studied for many decades, and they form the backbone of much industrial scheduling practice. Developing new dispatching rules for a given environment, however, is usually a tedious process involving implementing different rules in a simulation model of the facility under study and evaluating the rule through extensive simulation experiments. In this research, an innovative approach is presented, which is capable of automatically discovering effective dispatching rules. This is a significant step beyond current applications of artificial intelligence to production scheduling, which are mainly based on learning to select a given rule from among a number of candidates rather than identifying new and potentially more effective rules. The proposed approach is evaluated in a variety of single machine environments, and discovers rules that are competitive with those in the literature, which are the results of decades of research.