Article ID: | iaor20081073 |
Country: | United Kingdom |
Volume: | 25 |
Issue: | 1 |
Start Page Number: | 1 |
End Page Number: | 23 |
Publication Date: | Jan 2006 |
Journal: | International Journal of Forecasting |
Authors: | Busetti Fabio |
Keywords: | economics, finance & banking |
This paper discusses the use of preliminary data in econometric forecasting. The standard practice is to ignore the distinction between preliminary and final data, the forecasts that do so here being termed naive forecasts. It is shown that in dynamic models a multistep-ahead naive forecast can achieve a lower mean square error than a single-step-ahead one, as it is less affected by the measurement noise embedded in the preliminary observations. The minimum mean square error forecasts are obtained by optimally combining the information provided by the model and the new information contained in the preliminary data, which can be done within the state space framework as suggested in numerous papers. Here two simple, in general suboptimal, methods of combining the two sources of information are considered: modifying the forecast initial conditions by means of standard regressions and using intercept corrections. The issues are explored using Italian national accounts data and the Bank of Italy Quarterly Econometric Model.