An interactive evolutionary metaheuristic for multiobjective combinatorial optimization

An interactive evolutionary metaheuristic for multiobjective combinatorial optimization

0.00 Avg rating0 Votes
Article ID: iaor20073381
Country: United States
Volume: 49
Issue: 12
Start Page Number: 1726
End Page Number: 1738
Publication Date: Dec 2003
Journal: Management Science
Authors: ,
Keywords: heuristics: genetic algorithms
Abstract:

We propose an evolutionary metaheuristic for multiobjective combinatorial optimization problems that interacts with the decision maker (DM) to guide the search effort toward his or her preferred solutions. Solutions are presented to the DM, whose pairwise comparisons are then used to estimate the desirability or fitness of newly generated solutions. The evolutionary algorithm comprising the skeleton of the metaheuristic makes use of selection strategies specifically designed to address the multiobjective nature of the problem. Interactions with the DM are triggered by a probabilistic evaluation of estimated fitnesses, while memory structures with indifference thresholds restrict the presentation of solutions resembling those that have already been rejected. The algorithm has been tested on a number of random instances of the Multiobjective Knapsack Problem (MOKP) and the Multiobjective Spanning Tree Problem (MOST). Simulation results indicate that the algorithm requires only a small number of comparisons to be made for satisfactory solutions to be found.

Reviews

Required fields are marked *. Your email address will not be published.