A survey of simulated annealing as a tool for single and multiobjective optimization

A survey of simulated annealing as a tool for single and multiobjective optimization

0.00 Avg rating0 Votes
Article ID: iaor20072571
Country: United Kingdom
Volume: 57
Issue: 10
Start Page Number: 1143
End Page Number: 1160
Publication Date: Oct 2006
Journal: Journal of the Operational Research Society
Authors: ,
Keywords: programming: multiple criteria, heuristics
Abstract:

This paper presents a comprehensive review of simulated annealing (SA)-based optimization algorithms. SA-based algorithms solve single and multiobjective optimization problems, where a desired global minimum/maximum is hidden among many local minima/maxima. Three single objective optimization algorithms (SA, SA with tabu search and CSA) and five multiobjective optimization algorithms (SMOSA, UMOSA, PSA, WDMOSA and PDMOSA) based on SA have been presented. The algorithms are briefly discussed and are compared. The key step of SA is probability calculation, which involves building the annealing schedule. Annealing schedule is discussed briefly. Computational results and suggestions to improve the performance of SA-based multiobjective algorithms are presented. Finally, future research in the area of SA is suggested.

Reviews

Required fields are marked *. Your email address will not be published.