| Article ID: | iaor20072015 |
| Country: | United Kingdom |
| Volume: | 33 |
| Issue: | 6 |
| Start Page Number: | 1794 |
| End Page Number: | 1822 |
| Publication Date: | Jun 2006 |
| Journal: | Computers and Operations Research |
| Authors: | Reimann Marc, Laumanns Marco |
| Keywords: | heuristics |
The problem of connecting a set of client nodes with known demands to a root node through a minimum cost tree network, subject to capacity constraints on all links is known as the capacitated minimum spanning tree (CMST) problem. As the problem is NP-hard, we propose a hybrid ant colony optimization (ACO) algorithm to tackle it heuristically. The algorithm exploits two important problem characteristics: (i) the CMST problem is closely related to the capacitated vehicle routing problem (CVRP), and (ii) given a clustering of client nodes that satisfies capacity constraints, the solution is to find a MST for each cluster, which can be done exactly in polynomial time. Our ACO exploits these two characteristics of the CMST by a solution construction originally developed for the CVRP. Given the CVRP solution, we then apply an implementation of Prim's algorithm to each cluster to obtain a feasible CMST solution. Results from a comprehensive computational study indicate the efficiency and effectiveness of the proposed approach.