This paper addresses the problem of minimizing makespan for a given set of n jobs to be processed on each of m machines in a static jobshop, subject to the minimum completion time variance (CTV). A lower bound on CTV is developed for the static jobshop problem. A backward scheduling approach is proposed using the observations on the development of lower bound for hierarchical minimization of CTV and makespan. A lower bound on makespan subject to minimum CTV is also presented for this problem. Finally, we present two simulated annealing heuristic approaches using the concepts of forward and backward scheduling. Their performances are compared against each other through the use of the lower bounds established in this work. The simulated annealing heuristic based on backward scheduling is shown to perform well by evaluating the developed heuristics on 82 jobshop problems taken from literature.