Article ID: | iaor2007821 |
Country: | United Kingdom |
Volume: | 21 |
Issue: | 5 |
Start Page Number: | 321 |
End Page Number: | 333 |
Publication Date: | Jul 2006 |
Journal: | Computer-Aided Civil and Infrastructure Engineering |
Authors: | Benekohal Rahim F., Waller S. Travis, Sun Dazhi |
Keywords: | heuristics |
Although dynamic traffic control and traffic assignment are intimately connected in the framework of Intelligent Transportation Systems (ITS), they have been developed independent of one another by most existing research. Conventional methods of signal timing optimization assume given traffic flow pattern, whereas traffic assignment is performed with the assumption of fixed signal timing. This study develops a bi-level programming formulation and heuristic solution approach (HSA) for dynamic traffic signal optimization in networks with time-dependent demand and stochastic route choice. In the bi-level programming model, the upper level problem represents the decision-making behavior (signal control) of the system manager, while the user travel behavior is represented at the lower level. The HSA consists of a Genetic Algorithm (GA) and a Cell Transmission Simulation (CTS) based Incremental Logit Assignment (ILA) procedure. GA is used to seek the upper level signal control variables. ILA is developed to find user optimal flow pattern at the lower level, and CTS is implemented to propagate traffic and collect real-time traffic information. The performance of the HSA is investigated in numerical applications in a sample network. These applications compare the efficiency and quality of the global optima achieved by Elitist GA and Micro GA. Furthermore, the impact of different frequencies of updating information and different population sizes of GA on system performance is analyzed.