Article ID: | iaor20062019 |
Country: | United Kingdom |
Volume: | 44 |
Issue: | 3 |
Start Page Number: | 569 |
End Page Number: | 588 |
Publication Date: | Jan 2006 |
Journal: | International Journal of Production Research |
Authors: | Tiwari M.K., Goswami M. |
Keywords: | heuristics |
In this research, a comprehensive heuristic solution is evolved to include all the three segments of a machine loading problem of flexible manufacturing systems. These are part type sequence determination, operation allocation on machines and reallocation of part types. The machine loading problem has been formulated keeping in view two well-known objective functions, namely minimization of system unbalance and maximization of throughput. In addition to constraints related to machine time and tool slots availability, this research considers one more constraint related to material handling, i.e. number of AGVs available in the system. The part type sequence determination has been carried out by evaluating the contribution of part type to characteristics such as batch size, total processing time, and the AGV movement. Decisions pertaining to operation allocation are taken based on the enumeration of priority index. An iterative reallocation procedure has been devised to ensure minimum positive system unbalance and maximum throughput. A test problem is simulated to represent the real shop floor environment and the same has been solved using various steps of the proposed algorithm. Extensive computational experiments have been carried out to assess the performance of the proposed heuristic and validate its relevance to solve the real shop floor problems.