Article ID: | iaor20061332 |
Country: | Germany |
Volume: | 19 |
Issue: | 6 |
Start Page Number: | 759 |
End Page Number: | 789 |
Publication Date: | Dec 2005 |
Journal: | Water Resources Management |
Authors: | Kumar M. Dinesh, Singh O.P. |
Keywords: | agriculture & food, developing countries |
The argument that economies that face acute water scarcity problems can and should meet their water demand for food through cereal imports from water-rich countries; and that virtual water trade can be used to achieve water securities has become dominant in global water discussions. Analysis of country level data on renewable freshwater availability and net virtual water trade of 146 nations across the world shows that a country's virtual water trade is not determined by its water situation. Some countries have the advantage of high “economic efficiency” in food production and have surplus water, but resort to food import, whereas some water scarce countries achieve high virtual water trade balances. Further analysis with a set of 131 countries showed that virtual water trade increased with increase in gross cropped area. This is because of two reasons: First, when access to arable land increases, the ability to utilize available blue water for irrigation increases. Second, increasing access to arable land improves the access to water held in the soil profile as “free good”, a factor not taken into account in assessing water availability. Hence, many of the humid, water-rich countries will not be in a position to produce surplus food and feed the water scarce nations; and virtual water often flows out of water-poor, land rich countries to land-poor water-rich countries. This means that “distribution of scarcity” and “global water use efficiency”, are goals that are difficult to achieve through virtual water trade in a practical sense. For a water-poor, but land rich country, virtual water import offers little scope as a sound water management strategy as what is often achieved through virtual water trade is improved “global land use efficiency”. The important policy inferences emerging from the analyses are two: First, assessing the food security challenges posed to nations in future purely from a water resource perspective provides a distorted view of the food security scenario. National policies on food security should take into account “access to arable land” apart from water availability. Second, analysis of water challenges posed by nations purely from the point of view of renewable water availability and aggregate demands will be dangerous. Access to water in the soil profile, which is determined by access to arable land, would be an important determinant of effective water availability.