Article ID: | iaor20061279 |
Country: | Germany |
Volume: | 30 |
Issue: | 6 |
Start Page Number: | 422 |
End Page Number: | 427 |
Publication Date: | Dec 2005 |
Journal: | Structural and Multidisciplinary Optimization |
Authors: | Snyman J.A., Hay A.M. |
A numerical multi-level optimization methodology is proposed for determining dextrous workspaces of 3-degree-of-freedom (3-dof) planar parallel manipulators, in which it is required that at any point within the workspace, the manipulator is able to assume any orientation in a specified range. The method starts by finding a single initial point on the boundary of the dextrous workspace. This first stage requires the successive solution of three separate optimization sub-problems, where the evaluation of the objective function for the second problem and the constraint functions in the third problem are determined by the solution of appropriate optimization problems at a lower level. Once the boundary point is identified, further successive points along the dextrous workspace boundary are traced by the application of the so-called chord method. In the latter procedure, the determination of each successive boundary point is also obtained via a constrained optimization problem, where the constraint functions are again evaluated via the solution of an optimization problem at a lower level. The proposed method is illustrated by its successful application to three different manipulator design geometries, and for various ranges of dexterity.