Ensemble strategies for a medical diagnostic decision support system: A breast cancer diagnosis application

Ensemble strategies for a medical diagnostic decision support system: A breast cancer diagnosis application

0.00 Avg rating0 Votes
Article ID: iaor2006213
Country: Netherlands
Volume: 162
Issue: 2
Start Page Number: 532
End Page Number: 551
Publication Date: Apr 2005
Journal: European Journal of Operational Research
Authors: , , ,
Keywords: decision theory, neural networks
Abstract:

The model selection strategy is an important determinant of the performance and acceptance of a medical diagnostic decision support system based on supervised learning algorithms. This research investigates the potential of various selection strategies from a population of 24 classification models to form ensembles in order to increase the accuracy of decision support systems for the early detection and diagnosis of breast cancer. Our results suggest that ensembles formed from a diverse collection of models are generally more accurate than either pure-bagging ensembles (formed from a single model) or the selection of a “single best model.” We find that effective ensembles are formed from a small and selective subset of the population of available models with potential candidates identified by a multicriteria process that considers the properties of model generalization error, model instability, and the independence of model decisions relative to other ensemble members.

Reviews

Required fields are marked *. Your email address will not be published.