Article ID: | iaor20051551 |
Country: | United Kingdom |
Volume: | 11 |
Issue: | 3 |
Start Page Number: | 139 |
End Page Number: | 150 |
Publication Date: | May 2002 |
Journal: | Journal of Multi-Criteria Decision Analysis |
Authors: | Ryan David M., Ehrgott Matthias |
Keywords: | scheduling, transportation: air |
Optimization-based computer systems are used by many airlines to solve crew planning problems by constructing minimal cost tours of duty. However, today airlines do not only require cost effective solutions, but are also very interested in robust solutions. A more robust solution is understood to be one where disruptions in the schedule (due to delays) are less likely to be propagated into the future, causing delays of subsequent flights. Current scheduling systems based solely on cost do not automatically provide robust solutions. These considerations lead to a multiobjective framework, as the maximization of robustness will be in conflict with the minimization of cost. For example crew changing aircraft within a duty period is discouraged if inadequate ground time is provided. We develop a bicriteria optimization framework to generate Pareto optimal schedules for the domestic airline. A Pareto optimal schedule is one which does not allow an improvement in cost and robustness at the same time. We developed a method to solve the bicriteria problem, implemented it and tested it with actual airline data. Our results show that considerable gain in robustness can be achieved with a small increase in cost. The additional cost is mainly due to an increase in overnights, which allows for a reduction of the number of aircraft changes.