 
                                                                                | Article ID: | iaor2005121 | 
| Country: | United Kingdom | 
| Volume: | 42 | 
| Issue: | 9 | 
| Start Page Number: | 1727 | 
| End Page Number: | 1745 | 
| Publication Date: | Jan 2004 | 
| Journal: | International Journal of Production Research | 
| Authors: | Sha D.Y., Hsu S.Y. | 
| Keywords: | neural networks | 
Due date assignment (DDA) is the first important task in shop floor control. Due date-related performance is impacted by the quality of the DDA rules. Assigning order due dates and delivering the goods to the customer on time will enhance customer service and provide a competitive advantage. A new methodology for lead-time prediction, artificial neural network (ANN), is adopted to model new due date assignment rules. An ANN-based DDA rule, combined with simulation technology and statistical analysis, is presented. Whether or not the ANN-based DDA rule can outperform the conventional and Reg-based DDA rules taken from the literature is examined. The interactions between the DDA, order review/release (ORR), and dispatching rules significantly impact upon one another, and it is therefore very important to determine a suitable DDA rule for the various combinations of ORR and dispatching rules. From the simulation and statistical results, the ANN-based DDA rules perform better in due date prediction. The ANN-based DDA rules have a smaller tardiness rate than the other rules. ANN-based DDA rules have a better sensitivity and variance. Therefore, if system information is not difficult to obtain, the ANN-based DDA rule can perform a better due date prediction. This paper provides suggestions for DDA rules under various combinations of ORR and dispatching rules. ANN-Sep is suitable for most of these combinations, especially when ORR, workload regulation (WR) and two boundaries (TB) rules are adopted.