An evolutionary Lagrange method for mixed-integer constrained optimization problems

An evolutionary Lagrange method for mixed-integer constrained optimization problems

0.00 Avg rating0 Votes
Article ID: iaor20042304
Country: United Kingdom
Volume: 35
Issue: 3
Start Page Number: 267
End Page Number: 284
Publication Date: Jun 2003
Journal: Engineering Optimization
Authors: , ,
Keywords: optimization, programming: nonlinear
Abstract:

This study proposes a method for solving mixed-integer constrained optimization problems using an evolutionary Lagrange method. In this approach, an augmented Lagrange function is used to transform the mixed-integer constrained optimization problem into an unconstrained min–max problem with decision-variable minimization and Lagrange-multiplier maximization. The mixed-integer hybrid differential evolution (MIHDE) is introduced into the evolutionary min–max algorithm to accomplish the implementation of the evolutionary Lagrange method. MIHDE provides a mixed coding to denote genetic representations of real and integer variables, and a rounding operation is used to guide the genetic evolution of integer variables. To fulfill global convergence, self-adaptation for penalty parameters is involved in the evolutionary min–max algorithm so that small penalty parameters can be used, not affecting the final search results. Some numerical experiments are tested to evaluate the performance of the proposed method. Numerical experiments demonstrate that the proposed method converges to better solutions than the conventional penalty function method.

Reviews

Required fields are marked *. Your email address will not be published.