Multilayer perceptron for nonlinear programming

Multilayer perceptron for nonlinear programming

0.00 Avg rating0 Votes
Article ID: iaor2003365
Country: United Kingdom
Volume: 29
Issue: 9
Start Page Number: 1237
End Page Number: 1250
Publication Date: Aug 2002
Journal: Computers and Operations Research
Authors: ,
Keywords: programming: nonlinear
Abstract:

A new method for solving nonlinear programming problems within the framework of a multilayer neural network perceptron is proposed. The method employs the Penalty Function method to transform a constrained optimization problem into a sequence of unconstrained optimization problems and then solves the sequence of unconstrained optimizations of the transformed problem by training a series of multilayer perceptrons. The neural network formulation is represented in such a way that the multilayer perceptron prediction error to be minimized mimics the objective function of the unconstrained problem, and therefore, the minimization of the objective function for each unconstrained optimization is attained by training a single perceptron. The multilayer perceptron allows for the transformation of problems with two-sided bounding constraints on the decision variables x, e.g., a≤xn≤b, into equivalent optimization problems in which these constraints do not explicitly appear. Hence, when these are the only constraints in the problem, the transformed problem is constraint free (i.e., the transformed objective function contains no penalty terms) and is solved by training a multilayer perceptron only once. In addition, we present a new Penalty Function method for solving nonlinear programming problems that is parameter free and guarantees that feasible solutions are obtained when the optimal solution is on the boundary of the feasible region. Simulation results, including an example from operations research, illustrate the proposed methods.

Reviews

Required fields are marked *. Your email address will not be published.