Article ID: | iaor20023366 |
Country: | United Kingdom |
Volume: | 22 |
Issue: | 2 |
Start Page Number: | 63 |
End Page Number: | 73 |
Publication Date: | Mar 2001 |
Journal: | Optimal Control Applications & Methods |
Authors: | Yoneyama Takashi, Caetano Marco Antonio Leonel |
Keywords: | health services |
This work concerns the application of the optimal control theory to Dengue epidemics. The dynamics of this insect-borne disease is modelled as a set of non-linear ordinary differential equations including the effect of educational campaigns organized to motivate the population to break the reproduction cycle of the mosquitoes by avoiding the accumulation of still water in open-air recipients. The cost functional is such that it reflects a compromise between actual financial spending (in insecticides and educational campaigns) and the population health (which can be objectively measured in terms of, for instance, treatment costs and loss of productivity). The optimal control problem is solved numerically using a multiple shooting method. However, the optimal control policy is difficult to implement by the health authorities because it is not practical to adjust the investment rate continuously in time. Therefore, a suboptimal control policy is computed assuming, as the admissible set, only those controls which are piecewise constant. The performance achieved by the optimal control and the sub-optimal control policies are compared with the cases of control using only insecticides when Breteau Index is greater than or equal to 5 and the case of no-control. The results show that the sub-optimal policy yields a substantial reduction in the cost, in terms of the proposed functional, and is only slightly inferior to the optimal control policy.