Article ID: | iaor20013448 |
Country: | United Kingdom |
Volume: | 35 |
Issue: | 1 |
Start Page Number: | 47 |
End Page Number: | 72 |
Publication Date: | Jan 2001 |
Journal: | Transportation Research. Part A, Policy and Practice |
Authors: | Noland R.B. |
The theory of induced travel demand asserts that increases in highway capacity will induce additional growth in traffic. This can occur through a variety of behavioral mechanisms including mode shifts, route shifts, redistribution of trips, generation of new trips, and long run land use changes that create new trips and longer trips. The objective of this paper is to statistically test whether this effect exists and to empirically derive elasticity relationships between lane miles of road capacity and vehicle miles of travel (VMT). An analysis of US data on lane mileage and VMT by state is conducted. The data are disaggregated by road type (interstates, arterials: and collectors) as well as by urban and rural classifications. Various econometric specifications are tested using a fixed effect cross-sectional time series model and a set of equations by road type (using Zellner's seemingly unrelated regression). Lane miles are found to generally have a statistically significant relationship with VMT of about 0.3-0.6 in the short run and between 0.7 and 1.0 in the long run. Elasticities are larger for models with more specific road types. A distributed lag model suggests a reasonable long-term lag structure. About 25% of VMT growth is estimated to be due to lane mile additions assuming historical rates of growth in road capacity. The results strongly support the hypothesis that added lane mileage can induce significant additional travel.