Enhancing the universality and transferability of freeway incident detection using a Bayesian-based neural network

Enhancing the universality and transferability of freeway incident detection using a Bayesian-based neural network

0.00 Avg rating0 Votes
Article ID: iaor2001387
Country: United Kingdom
Volume: 7C
Issue: 5
Start Page Number: 261
End Page Number: 280
Publication Date: Oct 1999
Journal: Transportation Research. Part C, Emerging Technologies
Authors: ,
Keywords: measurement, neural networks
Abstract:

Development of a universal freeway incident detection algorithm is a task that remains unfulfilled despite the promising approaches that have been recently explored. Incident detection researchers are realizing that an operationally successful detection framework needs to fulfill a full set of recognized needs. In this paper we attempt to define one possible set of universality requirements. Among the set of requirements, a freeway incident detection algorithm needs to be operationally accurate and transferable. Guided by the envisioned requirements, we introduce a new algorithm with potential for enhanced performance. The algorithm is a modified form of the Bayesian-based Probabilistic Neural Network (PNN) that utilizes the concept of statistical distance. The paper is divided into three main sections. The first section is a detailed definition of the attributes and capabilities that a potentially universal freeway incident detection framework should possess. The second section discusses the training and testing of the PNN. In the third section, we evaluate the PNN relative to the Universality template previously defined. In addition to a large set of simulated incidents, we utilize fairly large real incident databases from the I-880 freeway in California and the I-35W in Minnesota to comparatively evaluate the performance and transferability of different algorithms, including the PNN. Experimental results indicate that the new PNN-based algorithm is competitive with the Multi Layer Feed Forward (MLF) architecture, which was found in previous studies to yield superior incident detection performance, while being significantly faster to train. In addition, results also point to the possibility of utilizing the real-time learning capability of this new architecture to produce a transferable incident detection algorithm without the need for explicit off-line retraining in the new site. In this respect, and unlike existing algorithms, the PNN has been found to markedly improve in performance with time in service as it retrains itself on captured incident data, verified by the Traffic Management Center (TMC) operator. Moreover, the overall PNN-based framework promises potential enhancements towards the envisioned universality requirements.

Reviews

Required fields are marked *. Your email address will not be published.