Truncation approximations of invariant measures for Markov chains

Truncation approximations of invariant measures for Markov chains

0.00 Avg rating0 Votes
Article ID: iaor2000417
Country: United Kingdom
Volume: 35
Issue: 3
Start Page Number: 517
End Page Number: 536
Publication Date: Sep 1998
Journal: Journal of Applied Probability
Authors:
Abstract:

Let P be the transition matrix of a positive recurrent Markov chain on the integers, with invariant distribution π. If (n)P denotes the n × n ‘northwest truncation’ of P, it is known that approximations to π(j)/π(0) can be constructed from (n)P, but these are known to converge to the probability distribution itself in special cases only. We show that such convergence always occurs for three further general classes of chains, geometrically ergodic chains, stochastically monotone chains, and those dominated by stochastically monotone chains. We show that all ‘finite’ perturbations of stochastically monotone chains can be considered to be dominated by such chains, and thus the results hold for a much wider class than is first apparent. In the cases of uniformly ergodic chains, and chains dominated by irreducible stochastically monotone chains, we find practical bounds on the accuracy of the approximations.

Reviews

Required fields are marked *. Your email address will not be published.