We consider the following optimal selection problem: There are n identical assets which are to be sold, one at a time, to coming bidders. The bids are independent, identically distributed where there are only two possible bid-values, with known probabilities. The stream of bidders constitutes a general renewal process, and rewards are continuously discounted at a constant rate. The objective is to maximize the total expected discounted revenue from the sale of the n assets. The optimal policy here is stationary, where the decision in question is only whether to accept a low bid or not; the answer is affirmative depending on a critical number n* of remaining assets. In this paper we derive an explicit formula for n*, being a function of the Laplace transform of the renewal distribution evaluated at the discount rate, the probability for a low bid, and the ratio between the two bid-values. We also specify the pertinent value functions. Applications of the model are discussed in detail, and extensions are made to include holding costs and to allow for optimal pricing.