Article ID: | iaor19993004 |
Country: | United Kingdom |
Volume: | 4D |
Issue: | 2 |
Start Page Number: | 109 |
End Page Number: | 125 |
Publication Date: | Mar 1999 |
Journal: | Transportation Research. Part D, Transport and Environment |
Authors: | Romilly Peter |
Keywords: | urban affairs |
Car exhaust emissions cause serious air pollution problems in many regions and, at a global level, contribute to climate change. Car use is also an important factor in other problems including traffic congestion, road accidents, noise pollution, community severance, and loss of countryside from road building. Forecasts of further increases in car ownership and use have prompted calls for policy-makers to encourage car users to switch to other forms of transport, particularly the bus. The effects of substituting bus for car travel in urban areas are simulated by specifying a spreadsheet model incorporating two types of car (petrol and diesel engine) and three types of bus (mini-, midi- and large bus). Six types of exhaust emission are considered for each vehicle type for the years 1992, 1995 and 1999: carbon monoxide, volatile organic compounds, nitrogen oxides, sulphur dioxide, (small) particulate matter and carbon dioxide. The paper provides a synthesis of monetary estimates of these exhaust emission and other costs. The other costs considered are traffic congestion, fuel consumption, noise pollution, road accidents and road damage. The exhaust emission monetary cost estimates, mainly from the United States and the United Kingdom, are discussed within the context of a sensitivity analysis which allows for changes in parameters such as load factors, emission factors and the individual exhaust emission cost estimates. The simulation results show that substitution of bus for car travel generally decreases the overall costs, particularly the costs of congestion, but increases exhaust emission costs if bus load factors are insufficiently high. In order to reduce exhaust emission costs from car to bus transfer at given load factors, the most effective policy option is to encourage the reduction of particulate emissions from bus engines. In terms of the overall costs, increasing bus load factors by relatively modest amounts can lead to substantial reductions in these overall costs. These results should be regarded as illustrative rather than definitive, given the uncertainties in a number of parameter estimates and the need for further research in areas not covered by the paper.