High occupancy vehicle lanes: Not always more effective than general purpose lanes

High occupancy vehicle lanes: Not always more effective than general purpose lanes

0.00 Avg rating0 Votes
Article ID: iaor1999267
Country: United Kingdom
Volume: 32A
Issue: 2
Start Page Number: 99
End Page Number: 114
Publication Date: Feb 1998
Journal: Transportation Research. Part A, Policy and Practice
Authors:
Keywords: planning, geography & environment
Abstract:

The success of a high occupancy vehicle lane in motivating people to shift to carpools and buses depends on maintaining a travel time differential between it and the adjacent general purpose lanes. This differential, in turn, depends on the level of continuing delay on the general purpose lanes. Therefore, it is clear that a high occupancy vehicle lane that will motivate people to shift to high occupancy vehicles will not eliminate congestion. Consequently, it is not clear that constructing a high occupancy vehicle lane will necessarily reduce delay more than construction of a general purpose lane. The objective of this research is to determine the circumstances in which this would be the case. The hypothesis is that such circumstances would be quite limited, and this proves to be the case. The intended benefits of high occupancy lanes are defined as reduced person-delay and reduced emissions. A model is developed to calculate these benefits for four alternatives: add a high occupancy vehicle lane, add a general purpose lane, convert an existing lane to a high occupancy vehicle lane, and do nothing. The model takes into account the initial conditions, the dynamic nature of the travel time differential between the high occupancy vehicle lane and other lanes, and the uncertainty regarding the extent to which people will shift modes. It combines queuing theory and mode choice theory and provides a robust method for comparing alternatives using a small amount of easily observed data. Application of the model in typical situations shows that with initial delays on the order of 15 min or more, adding a high occupancy vehicle lane would provide substantial reductions in delay and some reduction in emissions. However, in a wide range of such situations, adding a general purpose lane would be even more effective. Only if the initial delay is long and the initial proportion of high occupancy vehicles falls in a rather narrow range, would an added high occupancy vehicle lane be more effective. The proportion of high occupancy vehicles must be such that it allows good utilization of the high occupancy vehicle lane while maintaining a sufficient travel time differential to motivate a shift to buses or carpools. Adding a high occupancy vehicle lane to a three lane freeway will be more effective than adding a general purpose lane only if the initial maximum delay is on the order of 35 min or more and the proportion of high occupancy vehicles is on the order of 20%. Federal policies encourage construction of high occupancy vehicle lanes and restrict funding for general purpose lanes in areas that have not attained air quality standards. The findings of this research suggest a need to reconsider these policies.

Reviews

Required fields are marked *. Your email address will not be published.