Article ID: | iaor19971987 |
Country: | United Kingdom |
Volume: | 4C |
Issue: | 5 |
Start Page Number: | 307 |
End Page Number: | 318 |
Publication Date: | Oct 1996 |
Journal: | Transportation Research. Part C, Emerging Technologies |
Authors: | Dougherty Mark, Voort Mascha van der, Watson Susan |
Keywords: | time series & forecasting methods |
A hybrid method of short-term traffic forecasting is introduced: the KARIMA method. The technique uses a Kohonen self-organizing map as an initial classifier; each class has an individually tuned ARIMA model associated with it. Using a Kohonen map which is hexagonal in layout eases the problem of defining the classes. The explicit separation of the tasks of classification and functional approximation greatly improves forecasting performance compared to either a single ARIMA model or a backpropagation neural network. The model is demonstrated by producing forecasts of traffic flow, at horizons of half an hour and an hour, for a French motorway. Performance is similar to that exhibited by other layered models, but the number of classes needed is much smaller (typically between two and four). Because the number of classes is small, it is concluded that the algorithm could be easily retrained in order to track long-term changes in traffic flow and should also prove to be readily transferrable.